The Journal of Phytopharmacolog (Pharmacognosy and phytomedicine Research)

Research Article

ISSN 2320-480X

JPHYTO 2024; 13(1): 28-36 January- February Received: 22-12-2023 Accepted: 27-02-2024 ©2024, All rights reserved doi: 10.31254/phyto.2024.13105

Kossi Donatien Ahodegnon

1. Laboratoire Kaba de Recherche en Chimie et Applications, Institut National Supérieur de technologie industrielle, Université Nationale des Sciences, Technologies Ingénierie et Mathématiques, Benin

2. Laboratoire d'Etude et de Recherche en Chimie Appliquée, Ecole Polytechnique de l'Université d'Abomey-Calavi, Bénin

Fifa Théomaine Diane Bothon

1. Laboratoire Kaba de Recherche en Chimie et Applications, Institut National Supérieur de technologie industrielle, Université Nationale des Sciences, Technologies Ingénierie et Mathématiques, Benin

2. Laboratoire d'Etude et de Recherche en Chimie Appliquée, Ecole Polytechnique de l'Université d'Abomey-Calavi, Bénin

Félicien Avlessi

Laboratoire d'Etude et de Recherche en Chimie Appliquée, Ecole Polytechnique de l'Université d'Abomey-Calavi, Bénin

Correspondence:

Dr. Fifa Théomaine Diane Bothon Laboratoire d'Etude et de Recherche en Chimie Appliquée, Ecole Polytechnique de l'Université d'Abomey-Calavi, Bénin Email: botheo200108@gmail.com

Ethnobotanical study and inventory of medicinal plants used in the treatment of dermatological diseases in southern Benin

Kossi Donatien Ahodegnon, Fifa Théomaine Diane Bothon, Félicien Avlessi

ABSTRACT

The use of phytotherapy in the treatment of skin diseases is becoming more and more widespread in Benin due to the increasing number of dermatological diseases and the cosmetologically demands of the population. This study aimed to identify the medicinal plants used to treat common dermatoses in southern Benin. The methodology is based on ethnobotanical surveys carried out with the help of questionnaires among traditional therapists and medicinal plant sellers of different ages and sexes in some communes of southern Benin. The results obtained allowed us to identify 54 species of medicinal plants used in the treatment of dermatoses. The most frequently cited species include Crateva adansonii, *Zanthoxylum zanthoxyloides, Ageratum conyzoides, Cassia alata,* and *Chromolaena odorata.* Leaves are the most commonly used organ (73.29%). Decoction is the most popular method of preparation (95.4%), while bathing is the most commonly recommended method of administration (54.68%). All the information gathered will be used to create a database for future studies in the Beninese pharmacopeia to evaluate the efficacy of these antibacterial plants.

Keywords: Phytotherapy, Dermatosis, Decoction, Efficacy.

INTRODUCTION

They are a group of pathologies whose most visible symptoms are manifested in the target organs, particularly the skin, mucous membranes, and appendages ^[2]. Over the last 30 years, the incidence of these conditions has increased sharply in all regions of the world, including emerging countries ^[3]. Dermatoses are common in all age groups. They occupy an important place in the consultation profile in Africa and are among the most obvious major human pathologies, grouping mycotic, parasitic, bacterial, and viral infections ^[4]. Several studies have investigated the prevalence of these conditions worldwide and recognized them as a public health problem ^[5]. In Mali, dermatoses account for 10% of consultations, with a predominance of bacterial dermatoses ^[6]. In Benin, work carried out in 2012 showed that the most common clinical form of atopic dermatitis in Cotonou hospitals was eczema vulgaris ^[7]. From July to November 2019, a study in the Dermatology-venereology department of the largest referral hospital: Centre National Hospitalier Universitaire Hubert Koutoukou MAGA (CNHU-HKM) in Cotonou, on a sample of 119 children (aged 0 to 18 years), showed that immunoallergic dermatoses predominated (47.1%), followed by infectious dermatoses (40.4%). Atopic eczema (25.2%) and prurigo strophulus (14.3%) were the most common immunoallergic dermatoses, while candidiasis (29.1%) was the most common mycotic infection ^[8]. The standard treatment for these skin conditions is based on courses of corticosteroids and antibiotics. The results of these treatments can be slow, less effective, and limited by their high cost and side effects. Similarly, in Africa, most patients do not have access to essential dermatological medicines because they are expensive, which explains the growing interest in phytotherapy ^[9]. There are many avenues of research, but the exploration of natural resources seems to be one of the most promising, as their biodiversity makes them the largest reserve of active substances ^[10]. This would be a laudable alternative, as more than 80% of the African population in general, and the population of Benin in particular rely on traditional medicine for treatment ^[11, 12]. With this in mind, this study was carried out among those involved in the use of traditional plants, i.e. medicinal plant sellers and traditional therapists, to gain a basic understanding of the medicinal plants most commonly used in southern Benin for the treatment of dermatological conditions.

MATERIAL AND METHODS

Description of the study area: Benin is located in West Africa, between $6^{\circ}30'$ and $12^{\circ}30'$ north latitude and between 1° and $3^{\circ}40'$ east longitude. It takes the form of a block perpendicular to the coastline in the Gulf of Guinea, which includes the Gulf of Benin. It has a population of over 5.894.168 (INSAE-RGPH 4, 2013) ^[13]. It is bordered by the Atlantic Ocean to the south, Niger to the north, Burkina Faso to the northwest, Nigeria to the east, and Togo to the west. Bénin is characterized by three types of climates: the Beninese climate in the south, the dry tropical climate in the north between the 9th and 12th parallels, and a transitional humid tropical climate between the 7th and 9th parallels. The study area is the south of Benin, located between latitude $6^{\circ}19'$ and $7^{\circ}27'$ north and between latitude $1^{\circ}38'$ and longitude $2^{\circ}48'$ east. It consists of 7 departments and 44 municipalities. It is bounded to the north by the department of Colline, to the south by the Atlantic Ocean, to the east by Nigeria, and to the west by Togo. The study was carried out in the departments of Atlantique, Couffo, Littoral, Mono, Ouémé, Plateau, and Zou (Figure 1).

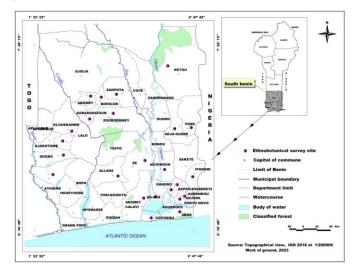


Figure 1: Map of the study area

Survey: The ethnobotanical study was carried out following a survey using a form containing questions on both the plants (name of plant species, organ used, preparation and administration methods) and the respondent (gender, level of education, age, origin of knowledge, experience).

Data processing: Survey data were entered and coded in a Microsoft Office 2019 Excel spreadsheet. Descriptive analysis of the data was performed using R software (version 4.2.2). Categorical variables were analyzed using contingency tables and chi-squared tests to determine the relationship between categorical variables. A p-value of less than 0.05 was considered statistically significant. Relative citation coefficients (RCF) and Family Importance Value Index (FIV) were calculated to retain the most cited plants and families. Simple linear regression was used to determine the relationship between the number of family citations and the FIV. Graphs were generated using Graph Pad Prisme 9.5 software.

RESULTS AND DISCUSSION

During the course of the survey, 255 people were interviewed (Atlantic: 46 (18.00%), Couffo: 42 (16.50%), Littoral: 25 (09.80%), Mono: 37 (14.50%), Ouémé: 31 (12.20%), Plateau: 23 (09.00%), Zou: 51 (20.00%)), including 145 herbalists (56.86%) and 110 herbal medicine sellers (43.14%) (Table 1).

Description of the survey population by age: The age of the respondents (Traditional therapists and Medicinal plant sellers) ranged from 19 to 73 years, with an average age of 46.72 ± 11.301 , with a predominance of people aged between 31 and 60 (212 people, or 83.10%). In the 61 to 90 age brackets, there were 28 people, or 11%. Young people under the age of 31 account for the smallest proportion

(5.90%) of the total workforce (Table 1). It was found that people in this age group have very little interest in traditional medicine.

Results show that people in the 30 to 60 age brackets have more knowledge than those in other age groups. This could be explained by the fact that knowledge of medicinal plants and their properties is generally acquired through long experience and passed down from one generation to the next. Experience accumulated with age is therefore the main source of local information on the use of plants in traditional medicine ^[14]. A survey by Sema et al in 2018 carried out in Doufelgou prefecture in Togo showed that 83% of those surveyed had inherited this practice from their ancestors ^[15]. El Hahyaoui et al. in 2015, also showed that knowledge of medicinal plants is the result of long experience acquired after many years of practice. Thus, older people are expected to provide more reliable information. It is therefore accepted that, in Africa, it is adults who hold the traditional knowledge of how to treat illnesses ^[16].

The coefficient of determination ($R^2 = 0.6836$) shows that the number of years of experience in using medicinal plants for skin disorders is moderately correlated with age. (Figure 2).

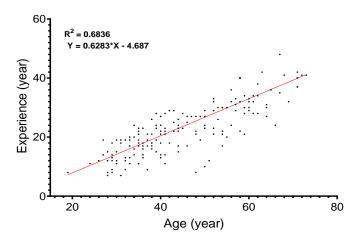


Figure 2: Relationship between years of experience and age of respondents

Description of the survey population by gender: In the present study, all the traditional therapists surveyed were male, while the medicinal plant sellers were female. Of the 255 people surveyed 110 (43.10%) were women and 145 (56.90%) were men (Table 1). This shows that both men and women know medicinal plants. A Study by Fah et al 2013 in the markets of Cotonou and Abomey Calavi in Benin showed that sales are often reserved for women, the majority of whom were between the ages of 30 and 60 ^[17]. These findings are also in line with those of Dassou et al in 2014 and Agbankpè et al in 2014, who came to the same conclusion ^[18, 19].

As for traditional therapists, they are all men, the majority aged between 31 and 60 (82.10%). This difference from medicinal plant sellers is explained by the fact that the traditional therapist is often associated with other sciences, such as geomancy, which is reserved for adults and especially men. This finding is identical to that of Klotoe et al. 2012; Dassou et al. 2014; Agbankpè et al. 2014 ^[20, 18, 19].

Description of the survey population by marital status: Regarding marital status, 96.90% of the survey population (traditional therapists and medicinal plant sellers) were married, 2.40% were single, and 0.80% were widowed (Table 1). These results are close to those of Benkhnigue et al. in 2011 and El Hilah in 2016 in Morocco, with 80% of married people and 19% who were still single ^[21, 22].

Table 1: Socio-demographic characteristics

Parameters Character		Size / Frequency	Traditional therapists	Medicinal plant sellers	Total	
	Atlantique	Size	15a	31b	46	
		Frequency	10.30	28.20	18.00	
	Couffo	Size	42a	0b	42	
		Frequency	29.00	0.00	16.50	
	Littoral	Size	ба	19b	25	
		Frequency	4.10	17.30	9.80	
	Mono	Size	37a	0b	37	
		Frequency	25.50	0.00	14.50	
Provinces	Oueme	Size	11a	20b	31	
		Frequency	7.60	18.20	12.20	
	Plateau	Size	13a	10a	23	
		Frequency	9.00	9.10	9.00	
	Zou	Size	21a	30b	51	
	200	Frequency	14.50	27.30	20.00	
	Total	Size	14.50	110	20.00	
	Total	Frequency	143	110	100	
	10-101	Size	0a (0.00)	10b (9.10)	10 (3.90)	
	J0-10J	Frequency	0a (0.00)	100 (9.10)	10 (3.90)	
]10-20]	Size	16-	57b	73	
]10-20]		16a			
	120, 201	Frequency	11.00	51.80	28.60	
]20-30]	Size	72a	42a	114	
Experience		Frequency	49.70	38.20	44.70	
1]30-40]	Size	51a	1b	52	
		Frequency	35.20	0.90	20.40	
]40-50]	Size	ба	Ob	6	
		Frequency	4.10	0.00	2.40	
	Total	Size	145	110	255	
		Frequency	100	100	100	
	Female	Size	0a	110b	110	
		Frequency	0.00	100.00	43.10	
Gender	Male	Size	145a	Ob	145	
Gender		Frequency	100.00	0.00	56.90	
	Total	Size	145	110	255	
		Frequency	100	100	100	
]0-30]	Size	0a	15b	15	
]30-60]	Frequency	0.00	13.60	5.90	
		Size	119a	93a	212	
		Frequency	82.10	84.50	83.10	
Age]60-90]	Size	26a	2b	28	
		Frequency	17.90	1.80	11.00	
	Total	Size	145	110	255	
	1 our	Frequency	140	110	100	
	Single	Size	0a	6b	6	
	Single	Frequency	0.00	5.50	2.40	
	Married	Size			2.40	
	Warned		145a	102b		
Marital status	Widow	Frequency	100.00	92.70	96.90	
	WIDOW	Size	0a	2a	2	
		Frequency	0.00	1.80	0.80	
	Total	Size	145	110	255	
		Frequency	100	100	100	
	Non-educated	Size	102a	31b	133	
		Frequency	70.30	28.20	52.20	
	Primary	Size	4a	29b	33	
School advert		Frequency	2.80	26.40	12.90	
School education	Secondary	Size	38a	50b	88	
		Frequency	26.20	45.50	34.50	
	University	Size	1a	Oa	1	
		Frequency	0.70	0.00	0.40	

	Total	Size	145	110	255	
		Frequency	100	100	100	
	Training courses	Size	0a	3b	3	
		Frequency	0.00	2.70	1.20	
	Heritage and trainin	Size	20a	2b	22	
		Frequency	13.80	1.80	8.60	
Origin of Imorrilodge	Heritage	Size	125a	104b	229	
Origin of knowledge		Frequency	86.20	94.50	89.80	
	Family initiation	Size	0a	1a	1	
		Frequency	0.00	0.90	0.40	
	Total	Size	145	110	255	
		Frequency	100	100	100	

Description of the survey population by educational level: In terms of academic level, most of the respondents were illiterate (52.20%), 12.90% had a primary level, 34.50% had a secondary level and only 0.40% had a university degree (Table 1). These results indicate that the level of education does not influence the knowledge of medicinal plants ^[18].

These results are consistent with those cited in the work of Benkhnigue and Fadli, (2011), who found that illiterates accounted for more than 60% of the population surveyed with knowledge of medicinal plants^[21].

Description of the survey population according to the source of information about plants: Regarding the origin of the knowledge, the majority of the respondents (89.80%) received the knowledge as an inheritance, 8.60% of the respondents acquired their knowledge through inheritance and training, while 1.20% of the study population received their information through reading and healers (training) and the rest (0.40%) through a family initiation (Table 1). This finding confirms the studies by Klotoé et al, 2013, and Benlamdini, 2014, according to which the virtues of plants are ancestral knowledge transmitted from generation to generation. This reflects the path of relative transmission of traditional practices that occurs from one generation to the next ^[23, 24].

Plant parts used: The most frequently used plant organs in the treatment of skin complaints are shown in Figure 3. Leaves are the most used (72.77%), roots (12.15%) and bark (9.81%), and Seeds (2.05%).

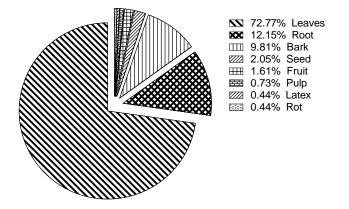


Figure 3: Percentage of plant parts used

Considered the most accessible organ of a plant, interest in leaves is because they are the storage site for secondary metabolites, which are responsible for the plant's biological properties ^[25, 26]. Diatta et al.'s work (2013) on medicinal plants used to treat dermatitis in the

pharmacopeia in Ziguinchor, a region of Senegal shows that leaves are the most commonly used organ (46%), followed by roots (21%) and bark (14%) ^[27]. This confirms the results of the present study. The results from Monteiro et al. in 2010 and Dibong et al. in 2011 work, show that generally leaves are the most commonly used organ in traditional medicine ^[28, 29]. The results of several studies conducted elsewhere in Africa are consistent with this ^[30, 31].

Plant extract preparation: According to Figure 4, plant parts are mainly prepared by decoction (92.63%), rarely by trituration (2.04%) or ointment (1.41%). Other preparation methods are used to a lesser extent.

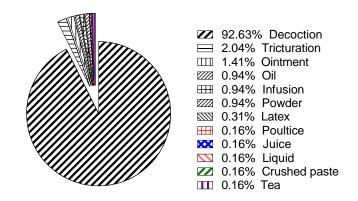


Figure 4: Plant preparation method

Several studies have shown that decoction is the most commonly used method of preparing herbal medicines. In Benin, Koudokpon et al 2017, Fah et al 2017 and Dougnon et al 2016 works came to the same conclusions ^[14, 17, 32]. In other parts of Africa, several authors from South Africa, Togo, Congo, and Nigeria have also found that decoction is the most commonly used preparation method by traditional healers ^[33, 34, 35, 36]. In 2017, Kinda et al. reported that this method is the most effective way to extract bioactive compounds from plants. This may explain why it is the most commonly used and recommended method by many traditional healers ^[37].

Method of administration of medicinal plants: Figure 5 shows the distribution of prescriptions according to the method of administration. In 50.98% of cases, the preparations were administered orally and as a bath, in 30.20% of cases only as a bath (rinsing), and in 10.98% of cases only orally. The use of creams, ointments, and compresses was 5.10%, 2.35%, and 0.39% respectively.

Table 2: List of plant species used in the traditional treatment of dermatoses in Southern Benin

Plants	Family	Common name	Organ	Method of preparation	Method of administration	Organ condition	FC	FCR
Agerantum conyzoides	Asteraceae	Kouvito takin	Leaves	Decoction	Bath/Oral	Fresh/ Dry	49	19.29
Adansonia digitata	Bombacaceae	Kpassa	Bark	Decoction	Bath	Fresh/ Dry	1	0.39
Acanthospermum hispidium	Asteraceae	Kpononmi	Leaves	Decoction		Fresh	2	0.79
Azadirachta indica	Meliaceae	Neem/kininoutin	Leaves/seeds/Fruit	Decoction/Oil /Ointment	Bath/Oral/Transdermal	Fresh/ Dry	15	5.90
Argemone Mexicana	Papaveraceae	Houètchégnon man	Leaves	Decoction	Bath/Oral	Fresh	1	0.39
Acacia nilotica	Mimosaceae	Gbanni	Leaves	Decoction/trituration	Bath	Fresh/ Dry	1	0.39
Anarcadium occidentalis	Amaranthaceae	Akajou tin	Bark	Decoction	Bath/Oral	Fresh/ Dry	1	0.39
Abrus precatorius	Fabaceae	Viviman	Leaves	Decoction	Bath	Fresh	1	0.39
Annona senegalensis	Annonaceae	Gnigoulé	Leaves/Bark	Decoction	Bath/Oral	Fresh/ Dry	12	4.72
Aloe vera	Liliaceae / Aloeaceae	Aloes	Leaves/Fruit/ Latex/Rod	Decoction/Latex/Ointment	Bath/Transdermal	Fresh	8	3.15
Crateva adansonii	Capparaceae	Hontonzunzin	Leaves/Root/Pulp	Decoction/Ointment	Bath/Oral/Scrubbing	Fresh	77	30.31
Cassia alata	Fabaceae	Amanssou	Leaves/Pulp	Decoction/Crushed paste/Powder/trituration	Bath/Oral/Transdermal	Fresh	49	19.29
Cajanus cajan	Papilionaceae	Klouékoun man	Leaves	Decoction	Bath/Oral	Fresh	5	1.97
Cymbopogan citratus	Poaceae	Tchaman	Leaves	Decoction/infusion	Oral	Fresh	1	0.39
Chassalia kolly	Rubiaceae	Djètin man	Leaves	Decoction	Bath	Fresh	1	0.39
Citrus limon	Rutaceae	Klétin	Leaves/Fruit	Decoction	Bath/Oral/Transdermal	Fresh	3	1.18
Combretum micranthum	Combretaceae	Kinikiniba	Leaves/Fruit	Decoction	Bath/Oral	Fresh/ Dry	2	0.79
Cola nitida	Sterculiaceae	Golotin	Fruit	Decoction	Bath/Oral	Fresh	1	0.39
Cocos nucifera	Arecaceae	Agonkètin	Fruit	Oil	Transdermal	Dry	1	0.39
Cassia occidentalis	Fabaceae	Gbessin man	Leaves/Seeds	Decoction/Tea/Tricturation	Bath/Oral	Fresh	12	4.72
Chromolaena odorata	Asteraceae	Agatouman	Leaves/Pulp	Decoction/Tricturation	Bath/Oral	Fresh	47	18.50
Carica papaya	Caryphyllaceae	Kpintin	Leaves	Decoction	Bath/Oral	Fresh	1	0.39
Calotropis procera	Asclepiadaceae	Amonman	Leaves/Rod	Decoction/Latex	Bath/Transdermal	Fresh	3	1.18
Caesalpinia pulcherrima	Fabaceae		Leaves	Decoction/Ointment	Bath/Oral/Scrubbing	Fresh	21	8.27
Heliotropiumindicum	Boraginaceae	Koklossoudenpaja	Leaves/Flower	Infusion	Oral	Fresh	1	0.39
Hyptis suaveolens	Lamiaceae	Sanssoukpeman/ Azonglidi	Leaves	Decoction	Bath/Oral	Fresh	21	8.27
Hibiscus sabdariffa	Malvaceae	Bissap	Leaves/Flower/Root	Decoction/Infusion	Oral/Transdermal	Fresh/ Dry	2	0.79
Jatropha curcas	Euphorbiaceae	Gnikpotin wéwé	Leaves/Seeds/Root	Decoction/Oil	Bath/Oral/Transdermal	Fresh/ Dry	7	2.76
Jatropha gossypifolia	Euphorbiaceae	Gnikpotin vovo	Root	Decoction	Bath/Oral	Fresh/ Dry	3	1.18
Jatropha multifida	Euphorbiaceae	Akpawi	Leaves	Decoction	Bath/Oral	Fresh	21	8.27
Khaya senegalensis	Meliaceae	Kailcédrat	Leaves/Bark/Root	Decoction/trituration	Bath/Oral	Fresh/ Dry	35	13.78
Momordica charantia	Cucurbitaceae	Gninssikin	Leaves/Fruit	Decoction/Liquid/Powder/trituration	Bath/Oral/Transdermal	Fresh	42	16.54
Mangifera indica	Anacardiaceae	Yovosintin	Bark	Decoction	Bath/Oral	Fresh/ Dry	3	1.18
Moringa oleifera	Moringaceae	Kpatinma wini	Leaves/Root	Decoction/Powder	Bath/Oral/Transdermal	Fresh	10	3.94
Mitracarpus scaber	Rubiaceae	Godoko	Leaves	Trituration	Transdermal	Fresh	1	0.39

The Journal of Phytopharmacology

Plants	Family	Common name	Organ	Method of preparation	Method of administration	Organ condition	FC	FCR
Newbouldia laevis	Bignoniaceae	Kpatin/ désrégué	Leaves	Decoction	Bath/Oral	Fresh	11	4.33
Nauclea latifolia	Rubiaceae	Kodo	Root	Decoction	Bath/Oral	Fresh/ Dry	6	2.36
Ocimum Americana	Lamiaceae		Leaves	Decoction	Bath/Oral	Fresh	9	3.54
Ocimum canum	Lamiaceae	Késsoukéssou	Leaves	Decoction	Bath/Oral	Fresh	2	0.79
Ocimum gratissimum	Lamiaceae	Tchiayo	Leaves	Decoction/Ointment	Bath/Oral/Scrubbing	Fresh	36	14.17
Parkia biglobosa	Fabaceae	Ahwatin	Leaves/Bark	Decoction	Bath/Oral	Fresh/Dry	9	3.54
Phoenix dactylifera	Arecaceae		Fruit	Decoction	Transdermal	Dry	1	0.39
Ricinus communis	Euphorbiaceae	Féfé/ Gogozunkuin	Fruit	Decoction/Ointment	Bath/Transdermal	Fresh/ Dry	3	1.18
Rhizophora racemosa	Rhizophoraceae		Leaves/Bark	Decoction	Bath/Oral	Fresh/ Dry	2	0.79
Sida acuta	Malvaceae	Adonman	Leaves	Decoction/Tricturation	Bath	Fresh	1	0.39
Senna sp	Fabaceae		Leaves	Decoction	Bath/Oral	Fresh	7	2.76
Tamarindus indica	Asteraceae	Djèvivi tin	Bark/Fruit/Pulp	Decoction/Infusion/Juice	Bath/Oral	Fresh/ Dry	3	1.18
Taraxacum officinalis	Lamiaceae	Gnantoto	Leaves/Root	Poultice/Decoction/infusion	Oral/Transdermal	Fresh/ Dry	3	1.18
Tridax procumbens	Asteraceae	Hladogbo	Leaves	Decoction	Bath/Oral	Fresh	5	1.97
Voacanga Africana	Apocynaceae	Agbossou ningla	Bark/Root	Decoction	Bath/Oral	Fresh/ Dry	2	0.79
Vernonia amygdalina	Asteraceae	Amavivè	Leaves	Decoction	Bath	Fresh	1	0.39
Vernonia colorata	Asteraceae	Dadorizihan	Leaves	Decoction/Tricturation	Bath	Fresh	1	0.39
Vitellaria paradoxa	Sapotaceae		Leaves/Bark/Fruit	Decoction/Oil	Bath/Oral/Transdermal	Fresh/ Dry	5	1.97
Zanthoxylum zanthoxyloides	Rutaceae	Hètin	Leaves/Bark	Decoction/Infusion	Bath/Oral	Fresh/ Dry	62	24.41

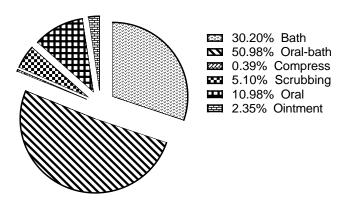


Figure 5: Recipe Management Mode

The results of Agbankpé et al in 2015, Fah et al in 2013, and Lawin et al in 2015 in Benin, which showed that the oral route was the route of administration for most herbal preparations, are similar to ours ^[17, 19, 38]. The same results were obtained in some African countries by Alfa et al. in 2018 in the central region of Sotouboua in Togo ^[35], and Ngbolua et al. in 2019 in Congo ^[37]. Kinda et al. in 2017 in the Hauts Bassins region of Burkina Faso ^[37], Gbadamosi et al. in 2014, and Ohemu et al. in 2014 in Nigeria ^[39, 40]. Distribution of species by botanical family: The most represented families in our study were Asteraceae (13.0%), followed by Fabaceae (5.6%) (Figure 6).

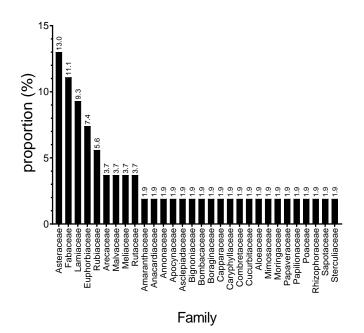


Figure 6: Breakdown by botanical family

The results of this study differ from those of Dougnon et al. (2016) and Koudokpon et al. (2017) who, in their studies of plants used to treat infections, highlighted the predominance of legume species among the species recorded ^[14, 32]. Other researchers in Africa found that Fabaceae species were the most common ^[35, 41].

This may be related to geographical conditions (soil type, climatic factors, etc.), which do not always favor the growth of the same plant species on different soil types and therefore have a significant influence on bioactive compounds, but also on socio-cultural factors ^[42]. As knowledge of the therapeutic use of plants is often passed

down from one generation to the next, the plants indicated for the treatment of a disease may also differ from one locality to another or from one ethnic group to another. As knowledge of the therapeutic use of plants is often passed down from one generation to the next, the plants indicated for the treatment of a disease may also differ from one locality to another or from one ethnic group to another.

Frequency of citation of plants used for the treatment of skin disorders: The 54 plant species most frequently cited by traditional therapists and medicinal plant sellers for the treatment of dermatological infections are listed in Table 2. This table shows the frequency of citation (FC), the relative coefficients of citation (FRC), the organ of the plant used, the method of preparation of the plants, and the method of administration of the recipe.

The most frequently mentioned species were *Crateva adansonii*, *Zanthoxylum zanthoxyloides*, *Ageratum conyzoides*, *Cassia alata*, and *Chromolaena odorata* with frequencies of 77%, 62%, 49%, 49%, and 47% respectively. The most frequently mentioned species were not necessarily in the order of the most represented botanical families.

CONCLUSION

This ethnobotanical study showed that southern Benin is an area rich in medicinal plant species indicated in the traditional treatment of skin diseases. Medicinal plant sellers and traditional therapists reported 54 medicinal plants for the treatment of dermatoses, of which 5 were frequently cited. However, this requires more in-depth pharmacological and toxicological studies

Acknowledgments

This study would certainly not have been possible without the invaluable help of our informants, the traditional therapists, and medicinal plant sellers. We would like to express our deepest gratitude and acknowledge their open and gracious cooperation.

Conflicts of Interest

The author reports no conflicts of interest.

Funding

None declared.

ORCID ID

Kossi Donatien Ahodegnon: https://orcid.org/0009-0007-4441-6314

Fifa Théomaine Diane Bothon: <u>https://orcid.org/0000-0003-2135-</u>0918

REFERENCES

- Pearl U, Vinod EN. A review of ethnomedicinal uses of shea butter for dermatoses in Sub-Saharan Africa. Dermatologic Therapy. 2021; e14786.
- 2. Cohen PR, Kurzrock R. Sweet's syndrome: A comprehensive review of an acute febrile nutophillic dermatosis. Orphanet Journal of Rare Diseases. 2007; 2(1): 34.
- Stambouli OB, Dahmani B, Himeur Z, Lachachi AD. Profil épidémiologique des affections dermatologiques de 1981–2017 : expérience du service de dermatologie de CHU Tlemcen (Ouest

Algérie). Annales de Dermatologie et de Vénéréologie. 2018 ; 145(4) : A31.

- 4. Orion E, Wolf R Psychologic consequences of facial dermatoses. Clinics in Dermatology. 2014 ; 32(6):767-71.
- 5. Lichterfeld-Kottner A, Hahnel E, Blume-Peytavi U, Kottner J. Systematic mapping review about costs and economic evaluations of skin conditions and diseases in the aged. Journal of tissue viability. 2017 ; 26(1): 6-19.
- Fofana Y, Dicko A, Tall K, Toure S, Kéita L, Dicko AM et al. Les motifs d'hospitalisation chez les enfants de moins de 16 ans à Bamako. Journal de la Société de Biologie Clinique du Bénin. 2017 ; 27 : 74-77.
- Agbessi N, Akpadjan F, Dégboé B, Nouhoumon G, Koudoukpo C, Adegbidi H, Atadokpédé F. Epidemio-clinical Profile of Atopic Dermatitis in Children in General Population in Parakou (Benin). Clinic Res Dermatol 2020;3(1):1-4.
- Akpadjan F, Adegbidi H, Lalya F, Yeko O, Dégboé B, d'Almeida M, Atadokpédé F. Rheumatoid Epidemioclinical Profile of Dermatoses in Children Aged 0 to 18 Years in the Dermatology –Venereology Department of the National Hospital and University Centre - HKM of Cotonou (Bénin). Journal of Dermatology Research. 2020; 1(3) :1-6.
- Zeggwagh A, Lahlou Y, Bousliman Y. Enquête sur les aspects toxicologiques de la phytothérapie utilisée par un herboriste à Fès, Maroc. The Pan African Medical Journal. 2013 ; 14 : 125.
- Baba-Aissa F. Encyclopédie des plantes utiles, flore d'Algérie et du Maghreb, substances végétales d'Afrique, d'Orient et d'Occident. Ed. EDAS, Alger. Algérie, 2000; 368p.
- Adomou AC, Yedomonhan H, Djossa B, Lègba SI, Oumorou M, Akoègninou A. Etude Ethnobotanique des plantes médicinales vendues dans le marché d'Abomey-Calavi au Bénin. International Journal of Biological and Chemical Sciences. 2012; 6(2): 745-772.
- Dougnon G, Dougnon VT, Klotoé JR, Agbodjento E, Zoumarou D, Lègba B, Koudokpon H, Assogba P, Hanski L, Ladékan EY. Local knowledge, practices, challenges of ethnopharmacologically used medicinal plants in Benin and implications for brain illnesses. Scientific Reports. 2023 ; 13 (19743): 1-13.
- 13. INSAE. Recensement Général de la Population et de l'Habitat-Bénin : RGPH 4. 2013 ; 33p
- 14. Dougnon TV, Attakpa E, Bankole H, Hounmanou YMG, Dehou R, Agbankpe J, De Souza M, Fabiyi K, Gbaguidi F, Baba-Moussa L. Etude ethnobotanique des plantes médicinales utilisées contre une maladie cutanée contagieuse : La gale humaine au Sud-Bénin. Revue CAMES Série Pharm. ; Méd. Trad. Af 2016 ; 18(1) : 16-22.
- 15. Sema M, Atakpama W, Kanda M, Koumantiga D, Batawila K, Akpagana K. Une forme de spécialisation de la médecine traditionnelle au Togo, Cas de la préfecture de Doufelgou. Journal de la Recherche Scientifique de l'Université de Lomé. 2018 ; 20 (4) : 29-43.
- 16. El Yahyaoui O, Aitouaaziz N, Sammama A, Kerrouri S, Bouabid B, Lrhorfi LA, and al. Etude ethnobotanique : Plantes médicinales commercialisées à la province de Laâyoune : identification et utilisation. International Journal of Innovation and Applied Studies. 2015 ; 12 (3) : 533-541 p.
- Fah L, Klotoé JR, Dougnon V, Koudokpon H, Fanou VBA, Dandjesso C, Loko F. Étude ethnobotanique des plantes utilisées dans le traitement du diabète chez les femmes enceintes à Cotonou et Abomey-Calavi (Bénin). Journal of Animal &Plant Sciences. 2013 ; 18 : 2647-2658.

- Dassou HG, Ogni CA, Yédomonhan H, Adomou AC, Tossou M, Dougnon JT, Akoègninou A. Diversité, usages vétérinaires et vulnérabilité des plantes médicinales au Nord-Bénin. Int. J. Biol. Chem. Sci. 2014 ; 8(1) : 189-210.
- Agbankpé AJ, Dougnon TV, Bankolé HS, Yèhouénou B, Yédomonhan H, Lègonou M. Etude ethnobotanique des légumes feuilles thérapeutiques utilisés dans le traitement des diarrhées au sud-Bénin (Afrique de l'Ouest). Int J Biol Chem Sci. 2014; 8(4):1784-95.
- Klotoé JR, Dougnon TV, Koudouvo K, Atègbo JM, Loko F, Akoègninou A, and al. Ethnopharmacological survey on antihemorrhagic medicinal plants in South of Benin. European Journal of Medicinal Plants. 2013; 3(1): 40-51.
- Benkhnigue O, Z idane L, Fadli M, Elyacoubi H, Rochdi A, Douira A. Étude ethnobotanique des plantes médicinales dans la région de Mechraâ Bel Ksiri (Région du Gharb du Maroc). 2011 ; 53 : 191-216
- El hilah F, Ben akka F, Bengueddour R, Rochdi A, Zidane L. Étude ethnobotanique des plantes médicinales utilisées dans le traitement des affections dermatologiques dans le plateau central marocain. Journal of Applied Biosciences. 2016 ; 98 : 9252 – 9260.
- Klotoé JR., Dougnon TV, Koudouvo K, Atègbo J-M, Loko F, Akoègninou A, Aklikokou K, Dramane K, Gbeassor M. Ethnopharmacological survey on antihemorrhagic medicinal plants in South of Benin. European Journal of Medicinal Plants. 2013; 3(1): 40-51.
- Benlamdini N, Elhafian M, Rochdi A, Zidane L. Etude floristique et ethnobotanique de la flore médicinale du Haut Atlas oriental (Haute Moulouya). Journal.of Applied Biosciences. 2014 ; 78: 6771-6787.
- 25. Kumar P, Lalramnghinglova H. India with Special Reference to an IndoBurma Hotspot Region. Ethnobotany Research & Applications. 2011; 9, 379-420.
- Mangambu MJ, Mushagalusa KF, Kadima NJ. Contribution à l'étude phytochimique de quelques plantes médicinales antidiabétiques de la ville de Bukavu et ses environs (Sud-Kivu, R. D. Congo). Journal of Applied Biosciences. 2014 ; 75 : 6211– 6220.
- Diatta CD, Gueye M, Akpo LE. Les plantes médicinales utilisées contre les dermatoses dans la pharmacopée Baïnounk de Djibonker, Sénégal. Journal of Applied Biosciences. 2013; 70: 5599-5607.
- Monteiro JM, Araujo EL, Amorim ELC, Albuquerque UP. Local markets and medicinal plant commerce: a review with emphasis on Brazil. Economic Botany. 2010; 64(4): 352-366.
- Dibong SD, Mpondo Mpondo E, Ngoye A, Kwin MF, Betti JL. Ethnobotanique et phytomédecine des plantes médicinales de Douala, Cameroun. Journal of Applied Biosciences. 2011; 37: 2496 - 2507.
- 30. N'Guessan K, Assi-Kaudjhis C et Kouassi KH. Ethnobotanical study of antitussive plants used in traditional medicine by Abbey and Krobou populations, in the south of Côte d'Ivoire. International Journal of Advances in Pharmacy Biology and Chemistry. 2015; 4 (2): 513-522.
- Ambé ASA, Ouattara D, Tiébre MS, Vroh BTA, Zirihi GN, N'Guéssan KE. Diversité des plantes médicinales utilisées dans le traitement traditionnel de la diarrhée sur les marchés d'Abidjan (Côte d'Ivoire). Journal of Animal & Plant Sciences. 2015 ; 26 (2) : 4081-4096.
- 32. Koudokpon H, Dougnon T, Bankolé H, Fah L, Hounmanou Y, Loko F. Enquête ethnobotanique sur les plantes utilisées dans le

traitement des infections au sudbénin. Santé Sci Dis. 2017 ; 18 : 92-9.

- 33. Odoh UE, Uzor PF, Eze CL, Akunne TC, Onyegbulam CM, Osadebe PO. Plantes médicinales utilisées par les habitants de la zone de gouvernement local de Nsukka, dans le sud-est du Nigéria, pour le traitement du paludisme : une enquête ethnobotanique. J Ethnopharmacol. 2018 ; 218 : 1-15.
- 34. Bade FT, Maliki M, Allagbe, Dah-Nouvlessounon D, Nabede A, Assogba S, et al. Enquête ethnobotanique sur trois espèces du genre Desmodium (Desmodium ramosissimum, Desmodium gangeticum et Desmodium adscendens) utilisées en médecine traditionnelle, Bénin. Int J Therm Sci. 2018 ; 7:12.
- 35. Alfa T, Anani K, Adjrah Y, Batawila C, Ameyapoh Y. Enquête ethnobotanique sur les plantes médicinales utilisées contre les infections fongiques dans la préfecture de la région centrale de Sotouboua. Togo Eur Sci J. 2018; 14(3):342-57.
- 36. Ngbolua K, Inkoto C, Mongo N, Ashande C, Masens Y, Mpiana P. Étude ethnobotanique et floristique de quelques plantes médicinales commercialisées à Kinshasa, République Démocratique du Congo. Rév Mar Sci Agron Vét. 2019 ; 7(1):118-28.
- 37. Kinda PT, Zerbo P, Guenné S, Compaoré M, Ciobica A, Kiendrebeogo M. Plantes médicinales utilisées pour le traitement des troubles neuropsychiatriques dans la région des Hauts Bassins du Burkina Faso. Médicaments. 2017; 4(32):1–21.
- Lawin IF, Laleyè OAF, Agbani OP, Assogbadjo AE. Bilan ethnobotanique des espèces végétales utilisées dans le traitement du diabète dans la zone soudano-guinéenne du Bénin. J Anim Plant Sci. 2015 ; 26(3) :4108-23.
- Gbadamosi IT, Egunyomi A. Enquête ethnobotanique sur les plantes utilisées pour le traitement et la gestion des infections sexuellement transmissibles à Ibadan, Nigeria. Ethnobot Res Appl. 2014; 12: 659-69.
- 40. Ohemu TL, Agunu A, Olotu PN, Ajima U, Dafam DG, Azila JJ. Enquête ethnobotanique sur les plantes médicinales utilisées dans le traitement traditionnel des infections virales à Jos, État du plateau, Nigeria. Int J Med Arom Plantes. 2014; 4(2):74-81.
- Masevhe NA, McGaw LJ, Eloff JN. L'utilisation traditionnelle des plantes pour gérer la candidose et les infections associées en Venda. Afrique du Sud. J Ethnopharmacol. 2015 ; 168 : 364-72.
- Laleye FOA, Mensah S, Assogbadjo AE, Ahissou H. Diversité, connaissances et utilisation des plantes dans le traitement traditionnel du diabète en République du Bénin. Ethnobot Res Appl. 2015; 14:231-57.

HOW TO CITE THIS ARTICLE

Ahodegnon KD, Bothon FTD, Avlessi F. Ethnobotanical study and inventory of medicinal plants used in the treatment of dermatological diseases in southern Benin. J Phytopharmacol 2024; 13(1):28-36. doi: 10.31254/phyto.2024.13105

Creative Commons (CC) License-

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. (http://creativecommons.org/licenses/by/4.0/).