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ABSTRACT 

Background: PTPN1B is identified to play a prime role in a negative role in the insulin signaling pathway 

which can be inhibited and could contribute to the enhancement of insulin function. Objective: The 

present study aimed to identify PTPN 1B inhibitors from Momordica charantia and perform gene set 

enrichment analysis of regulated protein molecules. Methods: The phytoconstituents present in 

Momordica charantia were identified and queried for PTPN1B inhibitors. Druglikeness score, side effects 

and gene expression were predicted for each compound. A docking study was performed to predict the 

binding affinity with PTPN1B receptor; later the binding affinities were compared. Kyoto Encyclopedia 

of Genes and Genomes pathway analysis was performed for the regulated genes to identify the modulated 

pathways. Results: Among the forty-four identified compounds present in Momordica charantia thirty-

three compounds were found to inhibit PTPN 1B. Momordin I possessed the highest binding affinity with 

PTPN1B. Cytokine-cytokine receptor pathway was predicted to modulate the most amounts of protein 

molecules in diabetes mellitus. The side effects of these compounds were also estimated and only three 

compounds showed side effects when Pa≥0.7. Conclusion: The present study indicates that PTPN 1B 

inhibitors from Momordica charantia have their anti-diabetic action due to their action on multiple protein 

molecules and the synergistic effect can be confirmed by future investigations.  

Keywords: Diabetes, Docking, Momordica charantia, PTPN1B inhibitors 

 
INTRODUCTION 

Type 2 Diabetes Mellitus is a polygenic condition which is characterized by hyperglycemia resulting from 

insulin resistance [1]. This is also due to a defect in insulin signaling pathways in which PTPN1B has a 

major contribution. Further, inhibition of this protein is a well-known approach in the management of type 

2 Diabetes Mellitus [2]. Likewise, the current pharmacotherapy of Type 2 Diabetes Mellitus includes 

synthetic oral hypoglycaemic agents which are associated with multiple side effects [3] suggesting the 

requirement of identification of new drug molecules in the treatment of diabetes mellitus with minimum 

side effects. The newer trend of drug discovery involves the use of in-silico studies including molecular 

docking and network pharmacology [3]. Further, these in-silico studies provide an overview of the 

characteristic of the drug molecule with the target and their probable interaction. Further, better 

characteristics of the drug with respect to its target can be predicted using gene set enrichment analysis [4]. 

Momordica charantia, also known as bitter melon (Karela) is being popularly used to treat sweet urea 

(Diabetes) from ancient times. It is a popular medicine for the treatment of diabetes in the population 

among Asia, South America, India and East Africa [5]. Momordica charantia has good anti-diabetic effects 

as it protects the pancreatic β-cells through the down-regulation of MAPKs and NF-κB in MIN6N8 cells. 

Momordica charantia also modulates the stress-activated protein kinase/c-Jun N-terminal kinase 

(SAPK/JNK), p38, and p44/42, and the activity of NF-κB [6]. Management of diabetes is better with the 

concept of the synergistic effect of compound over multiple targets rather than focusing on single 

compound-protein interaction [7]. Hence, this study was designed to identify the PTPN1B inhibitors from 

the compounds present in Momordica charantia by using drug-gene set enrichment analysis and network 

pharmacology to assess the synergistic effect. 

MATERIALS AND METHODS 

Mining of phytoconstituents and their targets 

The lists of compounds were obtained from Published literature and their canonical SMILES, molecular 

weight, and molecular formula were obtained from PubChem database (https://www.rcsb.org) [8]. 
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The targets were identified by using SwissTargetPrediction [9] by 

querying the Canonical SMILES obtained from the PubChem database. 

The compounds inhibiting PTPN1B were identified and recorded and 

based upon the top 25 results from the database the compounds were 

retrieved.  

Druglikeness and side effect(s) of phytoconstituents 

The druglikeness and side effect of the phytoconstituents was predicted 

by querying the retrieved Canonical SMILES in MolSoft [10] 

(http://molsoft.com/mprop/) and ADVERPred [11] respectively. The 

Pa>0.7 was considered to be experimentally expressed side effects. 

Prediction of gene expression profiles and Enrichment analysis 

Gene expression profile of phytoconstituents was identified by DIGEP-

Pred [12]. Canonical SMILES were used to identify the protein 

molecules which either upregulated or downregulated at a probable 

activity of 0.5. The protein interaction was identified through STRING 
[13] and the pathways involved in diabetes were identified using the 

Kyoto Encyclopaedia of Genes and genomes (KEGG) pathway 

database (https://www.genome.jp/kegg/) [14, 15] and published literature. 

Network construction 

Cytoscape 3.7 [16] was used to construct the network between 

compounds, target proteins and pathways and the command “Network 

analyzer” was used to analyze the network based on edge count. The 

map node size was set from “Low values to small sizes” and map color 

from “Low values to bright colors” based on edge count for both 

settings. 

Docking studies 

The pdb formats of the compounds present in Momordica charantia 

were retrieved from the Pub Chem database. MMFF94 forcefield [17] 

was used to minimize the energy of the ligand molecule to obtain ten 

different confirmations. The confirmations scoring the lowest energy 

were chosen as the ligand molecule. The X-ray crystallographic 

structure of protein tyrosine phosphatase nonreceptor 1B (PDB:2NT7) 

was obtained from the RCSB protein databank [18] and hetero atoms 

were removed using Discovery studio [19]. The docking study was 

carried out using autodock 4.0 [20]. After the completion of docking the 

pose having the lowest binding energy was chosen and then ligand-

protein interaction was visualized in Discovery Studio 2019. 

RESULTS 

Bio actives and targets 

Forty-four compounds were identified from (Momordica charantia); 

among them, thirty-three compounds were predicted to inhibit 

PTPN1B. The PubChem CID, molecular formula and Canonical 

SMILES of these compounds are summarized in Table 1. 

Druglikeness and probable side effects  

Among thirty-three phytoconstituents, fourteen compounds were 

predicted to have a positive druglikeness score. Among them, 

momordenol was predicted to have the highest druglikeness score i.e. 

1.07. Table 2 summarizes the molecular weight, number of hydrogen 

bond donor, acceptor, Log P and Log S and druglikeness score of 

individual phytoconstituents. Similarly, among thirty-three 

phytoconstituents only 3 compounds i.e. beta-cryptoxanthin, D- 

galacturonic acid and zeaxanthin were predicted to possess side effects 

at the probability of Pa>0.7. Table 3 summarizes the probable activity 

of predicted side effects of each compound. 

Enrichment analysis and pathway analysis 

The probable gene expressed proteins of PTPN1B inhibitors were 

identified in SwissTargetPrediction and analysis in STRING; identified 

17 pathways to be involved in diabetes mellitus. Among them, 

Cytokine-cytokine receptor interaction was predicted to be primarily 

modulated with the highest number of gene count i.e. 10. Table 4 

summarizes the probable modulated genes and their respective 

pathways involved in the diabetic pathogenesis. Similarly, Figure 1 

represents the pathway- protein interaction modulated by 

phytoconstituents of (Momordica charantia). Assessment of 

phytoconstituent-protein interaction identified lauric acid to be 

primarily involved to target the highest number of proteins. Similarly, 

CCL2 was predicted to be majorly targeted by the maximum number 

of phytoconstituents. The network of phytoconstituents and 

protein/gene is represented in Figure 2. 

In silico molecular docking 

Docking study was performed using Autodock 4.0 with a grid box as a 

center to the ligand. momordin-I showed the best binding affinity i.e. -

9.5 Kcal/mol. The ligand and target cloud have been represented in 

figure 3 along with the 2D structure showing the different types of 

bonds. Table 5 summarizes the binding energy, Number of hydrogen 

bonds and hydrogen bond residues of each phytoconstituent with 

PTPN1B. 

DISCUSSION 

The present study aimed to identify PTPN1B inhibitors from 

(Momordica charantia) and identify if these compounds are involved 

in the modulation of multiple pathways in the pathogenesis of Diabetes 

Mellitus. To evaluate this hypothesis we utilized system biology tools 

in which targets of phytoconstituents were queried in the STRING 

database to evaluate the protein-protein interaction followed by 

docking analysis to evaluate PTPN1B inhibitors as explained by a 

previous study [21]. 

The prediction is based on the principle that “similar compounds target 

similar proteins”. Hence, this study utilizes the docking study for the 

prediction of phytoconstituents from M. charantia as a target for 

PTPN1B inhibitors. On analyzing the data for probable side effects it 

was found that among the 33 compounds only 3 compounds i.e. beta-

Cryptoxanthin, D-galacturonic acid and zeaxanthin were predicted to 

have side effects as myocardial infarction, Nephrotoxicity and 

Myocardial infarction respectively. The compounds were screened to 

have probable side effects if they have Pa≥ 0.7.D- galacturonic acid has 

the highest probable side effect. The druglikeness score gives us the 

information if the molecule can behave like a drug if administered 

orally. Hence, the druglikeness score helps to compare the 

bioavailability of the compounds [22] which was also screened in the 

present study. 

It is known that single drug molecules can upregulate or downregulate 

a number of proteins. The concept of “one drug one protein and one 

therapeutic activity” is associated with multiple limitations. It is better 

to estimate on the basis of a single molecule to act on multiple proteins 

[23]. The compounds in this study were predicted to regulate multiple 

protein molecules at a probable activity of 0.5 in which the compounds 

from M. charantia were found to regulate 17 pathways involved in 

Diabetes Mellitus. 

The network constructed identified that Cytokine-cytokine receptor 

interaction pathways being majorly modulated and are also confirmed 

by KEGG pathway analysis as it has the highest number of gene count 

which can contribute to DM. The proteins modulated by cytokine-

cytokine receptor pathway were found to be TNFRSF1A, LEP, CCL4, 

CCL3, GH1, IL6R, FLT1, NGFR, CCL2 and IFNG. The results 

indicate that CCL2 promotes monocyte recruitment by acting on both 

locally and remotely and that of expression of CCL2 by insulin-

producing cells can lead to insulitis and islet destruction [24]. From the 

network obtained from phytoconstituent-protein interaction, we get to 

know that lauric acid modulates by targeting the most number of 
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protein molecules and CCL2 were known to be most targeted by a 

number of phytoconstituents. 

A docking study provides a better idea of how the compound (ligand) 

may bind with the desired receptor[25]. If the compound has a good 

binding affinity with the receptor to show pharmacological action 

clinically, this study may add weightage to preclinical studies and may 

provide confirmation of therapeutic response. Docking study was 

performed on the compounds and the results show that momordin I 

have the highest binding affinity with PTPN1B, this further indicates 

that the anti-diabetic effect of (Momordica charantia) may be due to 

momordin I [26]. 

 

Figure 1: Pathway-protein interaction 

 

Figure 2: Compound-Gene interaction 
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Figure 3: Interaction of momordin-I with PTPN1B 

Table 1: Name of compound, PubChem CID, Molecular formula, Molecular weight and SMILES 

S 
N

o 

compounds PubChe
m CID 

Molecular 
formula 

SMILES 

1. alpha-
Eleostearic 

acid 

5281115 C18H30O2 CCCCC=CC=CC=CCCCCCCCC(=O)O 

2. alpha-
Spinasterol 

5281331 C29H48O CCC(C=CC(C)C1CCC2C1(CCC3C2=CCC4C3(CCC(C4)O)C)C)C(C)C 

3. beta-

Cryptoxanthi
n 

5281235 C40H56O CC1=C(C(CCC1)(C)C)C=CC(=CC=CC(=CC=CC=C(C)C=CC=C(C)C=CC2=C(CC(CC2(C)C)O)C)C)C 

4. Cucurbitacin 

S 

119287 C30H42O6 CC1C2C(CC3(C2(CC(=O)C4(C3CC=C5C4C=C(C(=O)C5(C)C)O)C)C)C)OC(CC1=O)C(C)(C)O 

5. Cycloartenol 92110 C30H50O CC(CCC=C(C)C)C1CCC2(C1(CCC34C2CCC5C3(C4)CCC(C5(C)C)O)C)C 

6. D-

Galacturonic 

Acid 

439215 C6H10O7 C1(C(C(OC(C1O)O)C(=O)O)O)O 

7. Diosgenin 99474 C27H42O3 CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CC=C6C5(CCC(C6)O)C)C)C)OC1 

8. elasterol 1559964

0 

C29H46O CCC(CCC(C)C1=CCC2C1(CCC3C2=CCC4C3(CCC(C4)O)C)C)C(=C)C 

9. Erythrodiol 101761 C30H50O2 CC1(CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)C)O)C)C)C2C1)C)CO)C 

1

0. 

Flavochrome 1012772

77 

C40H56O CC1=CCCC(C1C=CC(=CC=CC(=CC=CC=C(C)C=CC=C(C)C2C=C3C(CCCC3(O2)C)(C)C)C)C)(C)C 

1
1. 

Gypsogenin  92825 
 

C30H46O4 CC1(CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)C=O)O)C)C)C2C1)C)C(=O)O)C 

1

2. 

Karounidiol 159490 C30H48O2 CC1(C(CCC2(C1CC=C3C2=CCC4(C3(CCC5(C4CC(CC5)(C)CO)C)C)C)C)O)C 

1

3. 

lanosterol 246983 C30H50O CC(CCC=C(C)C)C1CCC2(C1(CCC3=C2CCC4C3(CCC(C4(C)C)O)C)C)C 

1
4. 

lauric acid 3893 C12H24O2 CCCCCCCCCCCC(=O)O 

1

5. 

Linoleic acid 5280450  

C18H32O2 

CCCCCC=CCC=CCCCCCCCC(=O)O 

1
6. 

Linolenic 
acid 

5280934 C18H30O2 CCC=CCC=CCC=CCCCCCCCC(=O)O 

1

7. 

lutein 5281243 C40H56O2 CC1=C(C(CC(C1)O)(C)C)C=CC(=CC=CC(=CC=CC=C(C)C=CC=C(C)C=CC2C(=CC(CC2(C)C)O)C)C)C 

1

8. 

lycopene 446925 C40H56 CC(=CCCC(=CC=CC(=CC=CC(=CC=CC=C(C)C=CC=C(C)C=CC=C(C)CCC=C(C)C)C)C)C)C 

1
9. 

Momorchara
side B 

131828 C36H62O10 CC(C1CCC2(C1(CCC3(C2CC=C4C3CCC(C4(C)C)OC5C(C(C(C(O5)CO)O)O)O)C)C)C)C(C(C(C(C)(C)O)
O)O)O 

2

0. 

Momordenol 8572490

1 

C29H46O2 CCC(CCC(C)C1C(=O)C=C2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C)C(C)C 

2

1. 

Momordicini

n 

1452692

4 

C30H46O2 CC1CCC23CCC4(C5(CCC6C(C(=O)CCC6(C5C=CC4(C2C1C)OC3)C)(C)C)C)C 

2

2. 

Momordicos

ide I 

7171703

6 

C36H58O8 CC(CC=CC(C)(C)O)C1CCC2(C1(CCC34C2C=CC5(C3CCC(C5(C)C)OC6C(C(C(C(O6)CO)O)O)O)OC4)C)

C 
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2

3. 

Momordicos

ide L 

1017437

88 

C36H58O9 CC(CC=CC(C)(C)O)C1CCC2(C1(CCC3(C2C(C=C4C3CCC(C4(C)C)O)OC5C(C(C(C(O5)CO)O)O)O)C=O)

C)C 

2

4. 

Momordin 

Ic 

176596 C41H64O13 CC1(CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)C)OC6C(C(C(C(O6)C(=O)O)O)OC7C(C(C(CO7)O)O

)O)O)C)C)C2C1)C)C(=O)O)C 

2

5. 

Momordol 7130824

1 

C26H48O5 CCC1C(=O)C=CC(C1(C)CCCC(C)CCC(C)C(CC(C(CC)CO)O)O)(C)O 

2

6. 

multiflorenol 1231299

0 

C30H50O CC1(CCC2(CCC3(C4=CCC5C(C(CCC5(C4CCC3(C2C1)C)C)O)(C)C)C)C)C 

2
7. 

oleanolic 
acid 

10494 C30H48O3 CC1(CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)C)O)C)C)C2C1)C)C(=O)O)C 

2

8. 

oleic acid 445639 C18H34O2 CCCCCCCCC=CCCCCCCCC(=O)O 

2

9. 

Petroselinic 

acid 

5281125 C18H34O2 CCCCCCCCCCCC=CCCCCC(=O)O 

3
0. 

Rubixanthin 5281252 C40H56O CC1=C(C(CC(C1)O)(C)C)C=CC(=CC=CC(=CC=CC=C(C)C=CC=C(C)C=CC=C(C)CCC=C(C)C)C)C 

3

1. 

Sitogluside 5742590  C35H60O6 
 

CCC(CCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)OC5C(C(C(C(O5)CO)O)O)O)C)C)C(C)C 

3

2. 

Taraxerol 92097 C30H50O CC1(CCC2(CC=C3C4(CCC5C(C(CCC5(C4CCC3(C2C1)C)C)O)(C)C)C)C)C 

3

3. 

Zeaxanthin 5280899 C40H56O2 CC1=C(C(CC(C1)O)(C)C)C=CC(=CC=CC(=CC=CC=C(C)C=CC=C(C)C=CC2=C(CC(CC2(C)C)O)C)C)C 

 

Table 2: Drug likeness score of Phytoconstituents 

Compound Name Molecular 

formula 

Molecular 

weight 

Number of 

HBA 

Number of 

HBD 

MolLog

P 

Drug-likeness model 

score 

alpha-Eleostearic 

acid 

C18H30O2 278.22 2 1 6.49 -0.08 

alpha-Spinasterol C29H48O 412.37 1 1 9.06 0.06 

beta-Cryptoxanthin C40H56O 552.43 1 1 12.25 0.99 

Cucurbitacin S C30H42O6 498.3 6 2 4.53 -0.25 

Cycloartenol C30H50O 426.39 1 1 9.22 -0.31 

D-Galacturonic Acid C6H10O7 194.04 7 5 -3.01 -0.3 

Diosgenin C27H42O3 414.31 3 1 6.39 -0.04 

elasterol C29H46O 410.35 1 1 9.48 0.52 

Erythrodiol C30H50O2 442.38 2 2 8.05 -0.13 

flavochrome C40H56O 552.43 1 0 13.07 -0.19 

Gypsogenin C30H46O4 470.34 4 2 6.44 0.33 

Karounidiol C30H48O2 440.37 2 2 7.73 -0.26 

Lanosterol C30H50O 426.39 1 1 9.47 0.52 

Lauric acid C12H24O2 200.18 2 1 4.73 -0.33 

Linoleic acid C18H32O2 280.24 2 1 6.73 -0.08 

Linolenic acid C18H30O2 278.22 2 1 6.31 0.36 

lutein C40H56O2 568.43 2 2 11.07 -0.33 

lycopene C40H56 536.44 0 0 14.28 -1.04 

Momorcharaside B C36H62O10 654.43 10 8 3.13 0.18 

Momordenol C29H46O2 426.35 2 1 8.31 1.07 

Momordicinin C30H46O2 438.35 2 0 7.22 0.38 

Momordicoside I C36H58O8 618.41 8 5 4.67 -0.41 

Momordicoside L C36H58O9 634.41 9 6 3.55 0.15 

Momordin Ic C41H64O13 764.43 13 7 3.8 0.78 

Momordol C26H48O5 440.35 5 4 5.67 -0.52 

Multiflorenol C30H50O 426.39 1 1 9.17 -0.35 

Oleanolic acid C30H48O3 456.36 3 2 7.8 0.37 

Oleic acid C18H34O2 282.26 2 1 7.15 -0.08 

Petroselinic acid C18H34O2 282.26 2 1 7.15 -0.08 

Rubixanthin C40H56O 552.43 1 1 12.69 0.15 

Sitogluside C35H60O6 576.44 6 4 7.13 0.51 

Taraxerol C30H50O 426.39 1 1 9.07 -0.91 

Zeaxanthin C40H56O2 568.43 2 2 11.09 -0.18 
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Table 3: Side effect of compounds 

S No compounds Side effect Pa Pi 

1. beta-Cryptoxanthin Myocardial infarction 0.700 0.012 

2. D-Galacturonic Acid Nephrotoxicity 0.850 0.008 

3. Zeaxanthin Myocardial infarction 0.711 0.010 

 

Table 4: Enrichment analysis of phytoconstituents 

KEGG 

pathway 

Description pathway Count in gene 

set 

Gene codes 

hsa04066 HIF-1 signaling pathway 9 IL6R,IFNG,NOS2,TIMP1,HMOX1,TFRC,FLT1,PRKCA,GAPDH 

hsa04920 Adipocytokine signaling 

pathway 

7 TNFRSF1A,CD36,LEP,PPARA,POMC,ADIPOQ,RXRA 

 

hsa04060 Cytokine-cytokine receptor 

interaction 

10 IL6R,GH1,CCL4,CCL3,IFNG,LEP,CCL2,TNFRSF1A,FLT1,NGFR 

 

hsa04115 p53 signaling pathway 6 CASP8,CCND2,MDM2, CHEK1, ATM,TP73 

 

hsa04310 Wnt signaling pathway 6 MMP7,RHOA,RAC1,PRKCA,CTNNB1,CCND2 

hsa04972 Pancreatic secretion 5 CD38,RAP1A,RHOA,RAC1,PRKCA 

 

hsa04933 

 

AGE-RAGE signaling pathway in 

diabetic 

complications 

5 CCL2,MMP2,COL1A1,RAC1,PRKCA 

hsa04614 Renin-angiotensin system 3 AGT,REN,KLK2 

hsa04722 Neurotrophin signaling pathway 5 RAP1A,RHOA,RAC1,NGFR,TP73 

hsa03320 PPAR signaling pathway 4 CD36,PPARA,AIDPOQR,XRA 

hsa04068 FoxO signaling pathway 5 CAT,SIRT1,MDM2,ATM,CCND2 

hsa04211 Longevity regulating pathway 4 ADIPOQ,CAT,ATG5,SIRT1 

hsa04630 Jak-STAT signaling pathway 5 IL6R,GH1,IFNG,LEP,CCND2 

hsa04110 Cell cycle 4 CCND2,MDM2,CHEK1,ATM 

hsa04350 TGF-beta signaling pathway 3 RHOA,IFND,ID1 

hsa04940 

 

Type I diabetes mellitus 2 IFNG,CD86 

hsa04931 Insulin resistance 3 CD36,PPARA,TNFRSF1A 

 

Table 5: Binding affinity of phytoconstituents with PTPN1B along with Hydrogen bond interactions 

Ligand Binding Affinity 

(kcal/mol) 

Number of 

hydrogen bonds 

Hydrogen bond residues 

Cucurbitacin S -7.9 2 THRA:177,GLNA:127 

Cycloartenol -7.9 NA NA 

D Galacturonic Acid -6.2 2 LYSA:116,ARGA:221 

Diosgenin -8.3 NA NA 

Erythrodiol -8.4 2 ASNA:162,ASPA:137 

Gypsogenin -8.3 1 ASNA:162 

Karounidiol -7.6 1 SERA:28 

Lanosterol -8.6 NA NA 

Lauric acid -5.7 NA NA 

Linoleic acid -5.8 1 LYSA:197 

Linolenic acid -6 4 GLUA:200,LYSA:197,ASNA:193 

Momorcharaside B -7.1 4 ASNA:90, ASPA137,GLUA:132GLNA:127 

Momordenol -7.5 NA NA 

Momordicinin -8.8 2 LYSA:120,TYRA:46 

Momordicoside I -8.5 1 SERA:205 

Momordicoside L -7 5 GLNA:123,ARGA156,GLNA:127,GLUA147 
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Momordin I -9.5 9 TYRA:46,ARGA:221, GLNA:266, TRPA:179, GLYA:183, 

LYSA:116 

Momordol -6.4 2 LYSA:197,ASNA:193 

Multiflorenol -8.4 1 ARGA:238 

Oleic acid -5.6 NA NA 

Petroselinic acid -5.5 2 LYSA:197, ASNA:193 

Rubixanthin -8.4 NA NA 

Sitogluside -7.6 NA NA 

Taraxerol -8 1 GLUA:76 

Zeaxanthin -8.6 NA NA 

alpha-Eleostearic acid -6.3 1 GLUA: 276 

alpha-Spinasterol -7.9 NA NA 

beta-Cryptoxanthin -8.9 NA NA 

elasterol -7.5 1 ALAA:189 

flavochrome -8.3 NA NA 

lutein -8.4 NA NA 

lycopene -7.4 NA NA 

oleanolic -8.6 1 ASNA:162 

 

CONCLUSION 

The present study identified momordin I from M. charantia to play a 

prime role in the management of diabetes mellitus. Further, it adds 

scientific literature to provide an additional mechanism of action for the 

management of diabetes mellitus. However, the findings of the present 

study are only based on the computer simulations which need to be 

validated by using experimental protocols.  
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